If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-1024=0
a = 1; b = 6; c = -1024;
Δ = b2-4ac
Δ = 62-4·1·(-1024)
Δ = 4132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4132}=\sqrt{4*1033}=\sqrt{4}*\sqrt{1033}=2\sqrt{1033}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1033}}{2*1}=\frac{-6-2\sqrt{1033}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1033}}{2*1}=\frac{-6+2\sqrt{1033}}{2} $
| -8+2y=12 | | 18−5x=−42 | | w3− -6=9 | | 5x+12=-1+18x | | -102-10x=54+3x | | 3x-32=7 | | 7(b-10)=96 | | 2x+3=5-3 | | 6x+17=2x+35 | | (2x-10)+(x+25)+x=180 | | 3n−5=4n+3 | | 22+100y=25+70y | | 800=100x-0.5x^2-40x+800 | | 3x-6x+8=0 | | 10x+220=30x+60 | | 7y+y+34=90 | | -7x+24-5x=180 | | -j+-4=-1 | | 3/4a+2=8 | | 6x+21=10x+9- | | -4(2x6+)=16 | | 9x(3x-5)=0 | | 11-x/45=15/75 | | -8b+3(1+8b)=83 | | 80x-675=2310 | | -10-6w=114 | | 675x-80=2310 | | x-9+9=11+9 | | 7-7y+6=30 | | 5=(b+6)-3b | | 2(x+4)=2(x | | 13b+36≥=75 |